Custom Search

Anna University CAMPUS Placement cognizant 2013 passing Out students

Anna University Dec 2012 Maths 3 m3 Reexam issue full Details

Anna University Nov/Dec 2012 3rd,5th,7th semester result Tentative dates

GATE 2013 HALL TICKET DOWNLOAD AND EXAM TIME TABLE

TN +2 october 2012 results

TIPS FOR ANNA UNIVERSITY STUDENTS TO GET PASS MARK EASILY

TN HSC 12TH MARCH 2013 TIME TABLE Announced Download soon

TN SAMACHEERKALVI 10TH March/April 2013 TIME TABLE Announced Download soon

ANNA UNIVERSITY MAY/JUNE REVALUATION REVIEW PROCEDURE, LAST DATE, APPLICATION FEE, REFUND PROCEDURE

ANNA UNIVERSITY MAY/JUNE 2012 REVALUATION RESULTS for 2nd,4th,6th,8th SEMESTER AVAILABLE HERE

ANNA UNIVERSITY FIRST SEMESTER BE/BTECH QUESTION BANK

GATE 2013 APPLY ONLINE AND KNOW MORE ABOUT NEW 2013 GATE

ANNA UNIVERSITY NOV/DEC 2012 TIME TABLE FOR 3RD,5TH,7TH SEMESTER

ANNA UNIVERSITY MAY/JUNE 2012 REVALUATION LAST DATE AUGUST 29, REVALUATION PROCEDURE,RESULT

ANNA UNIVERSITY MAY/JUNE 2012 RESULTS announced

ANNA UNIVERSITY TANCA ME/MTECH RANK LIST AND COUNSELLING SCHEDULE ANNOUNCED CLICK HERE

ANNA UNIVERSITY MAY/JUNE 2012 2ND,4TH,6TH,8TH SEMESTER RESULT DATE ANNOUNCED CLICK HERE

ANNA UNIVERSITY IMPORTANT INFORMATION FOR FIRST YEAR 2012-2013 STUDENTS

UNIVERSITY DEPARTMENTS AU:ANNA UNIVERSITY PART TIME BE/BTECH MAY/JUNE 2012 RESULTS ANNOUNCED CLICK HERE

TNEA 2012 TODAY'S VACANCY POSITION CHECK SOON

ANNA UNIVERSITY 8TH SEMESTER MAY/JUNE 2012 RESULTS ANNOUNCED CHECK SOON

ANNA UNIVERSITY 2ND SEMESTER JUNE 2012 RESULTS DATE FOR ALL COLLEGES TENTATIVE

ANNA UNIVERSITY CHENNAI 4TH SEMESTER,6TH SEMESTER MAY/JUNE 2012 RESULTS INCLUDING ARREARS ANNOUNCED CHECK SOON

ANNA UNIVERSITY OF TECHNOLOGY CHENNAI 4TH SEMESTER,6TH SEMESTER MAY/JUNE 2012 RESULTS INCLUDING ARREARS ANNOUNCED CHECK SOON

ANNA UNIVERSITY OF TECHNOLOGY TRICHY 4TH SEMESTER,6TH SEMESTER MAY/JUNE 2012 RESULTS INCLUDING ARREARS ANNOUNCED CHECK SOON

ANNA UNIVERSITY COIMBATORE 4TH SEMESTER,6TH SEMESTER MAY/JUNE 2012 RESULTS INCLUDING ARREARS ANNOUNCED CHECK SOON

ANNA UNIVERSITY TIRUNELVELI 4TH SEMESTER,6TH SEMESTER MAY/JUNE 2012 RESULTS INCLUDING ARREARS ANNOUNCED CHECK SOON

ANNA UNIVERSITY MADURAI 4TH SEMESTER,6TH SEMESTER MAY/JUNE 2012 RESULTS INCLUDING ARREARS ANNOUNCED CHECK SOON

TAMILNADU ENGINEERING ADMISSIONS 2012 TNEA 2012 VACANCY POSITION

TAMILNADU ENGINEERING ADMISSIONS 2012 TNEA 2012 RANK LIST ANNOUNCED CHECK SOON

TAMILNADU ENGINEERING ADMISSIONS 2012 COUNSELLING SCHEDULE, IMPORTANT DATES CHECK SOON

TAMILNADU ENGINEERING ADMISSIONS 2012 COUNSELLING CALCULATE CUT OFF MARK CLICK HERE

ANDHRA PRADESH AP SSC RESULTS OUT TODAY CHECK SOON

CBSE SSLC CLASS 10TH RESULTS TODAY CHECK SOON

KARNATAKA PUC (2ND) RESULTS ANNOUNCED CHECK SOON

RAJASTHAN 12TH COMMERCE RESULTS TO BE ANNOUNCED TODAY 12TH MAY 2012 CLICK HERE (BSER 12TH RESULTS)

MEGHALAYA HSSLC 2012 RESULTS CLICK HERE

KERALA SSLC/10TH 2012 RESULTS CLICK HERE

AP INTER 2ND YEAR RESULTS 2012 ANNOUNCED CLICK HERE

AP EAMCET 2012 EXAM HALL TICKET DOWNLOAD CLICK HERE

SBTET ANDHRA DIPLOMA APRIL/MAY 2012 TIME TABLE CLICK HERE

TAMIL NADU +2 RESULTS ANNOUNCED CLICK HERE

TAMIL NADU 10th SSLC SAMACHEERKALVI RESULTS ON JUNE 4TH 2012 CLICK HERE

ANNA UNIVERSITY MAY/JUNE 2012 TIME TABLE ALL UPDATES IN ONE PAGE

ANNA UNIVERSITY OF TECHNOLOGY TRICHY (2007,2008 REGULATION) MAY/JUNE 2012 REVISED TIME TABLE CLICK HERE (AFFILIATED COLLEGES AND UNIVERSITY DEPARTMENTS) FOR BE AND BTECH

ANNA UNIVERSITY OF TECHNOLOGY COIMBATORE (2007,2008 REGULATION) MAY/JUNE 2012 REVISED TIME TABLE CLICK HERE (AFFILIATED COLLEGES AND UNIVERSITY DEPARTMENTS) FOR BE AND BTECH

ANNA UNIVERSITY OF TECHNOLOGY TIRUNELVELI (2007,2008,2009,2010 REGULATION) MAY/JUNE 2012 REVISED TIME TABLE CLICK HERE (AFFILIATED COLLEGES AND UNIVERSITY DEPARTMENTS) FOR BE AND BTECH

ANNA UNIVERSITY OF TECHNOLOGY MADURAI (2010 REGULATION) MAY/JUNE 2012 REVISED TIME TABLE CLICK HERE (AFFILIATED COLLEGES AND UNIVERSITY DEPARTMENTS) FOR BE AND BTECH

ANNA UNIVERSITY OF TECHNOLOGY CHENNAI (2007,2008 REGULATION) MAY/JUNE 2012 REVISED TIME TABLE CLICK HERE (AFFILIATED COLLEGES AND UNIVERSITY DEPARTMENTS) FOR BE AND BTECH

ANNA UNIVERSITY 2ND SEMESTER MAY/JUNE 2012 REVISED TIME TABLE (APPLICABLE FOR CHENNAI, TRICHY, COIMBATORE, MADURAI, TIRUNELVELI FOR 2011 BATCHES ALSO)

ANNA UNIVERSITY RESCHEDULED EXAM DATES CLICK HERE

ANNA UNIVERSITY MAY/JUNE 2012 RESULTS ON JUNE

ANNA UNIVERSITY FIRST SEMESTER JAN 2012 REVALUATION RESULTS CLICK HERE

ANNA UNIVERSITY FIRST SEMESTER JAN 2012 BE/BTECH BSC MSC MCA MBA RESULTS ANNOUNCED

ANNA UNIVERSITY OF TECHNOLOGY THIRD SEMESTER NOV/DEC 2011 REVALUATION RESULTS ANNOUNCED CLICK HERE

ANNA UNIVERSITY COIMBATORE NOV/DEC 2011 REVALUATION RESULTS ANNOUNCED

ANNA UNIVERSITY TIRUNELVELI NOVEMBER/DECEMBER 2011 REVALUATION RESULTS

ANNA UNIVERSITY 3RD SEMESTER NOVEMBER/DECEMBER 2011 RESULTS

ANNA UNIVERSITY CHENNAI BE/BTECH, ME/MTECH, MCA, NOVEMBER/DECEMBER 2011 RESULTS

ANNA UNIVERSITY TRICHY NOVEMBER/DECEMBER 2011 RESULTS

ANNA UNIVERSITY TRICHY NOVEMBER/DECEMBER 2011 REVALUATION RESULTS

ANNA UNIVERSITY COIMBATORE NOVEMBER/DECEMBER 2011 RESULTS

ANNA UNIVERSITY TIRUNELVELI NOVEMBER/DECEMBER 2011 RESULTS

ANNA UNIVERSITY MADURAI NOVEMBER/DECEMBER 2011 RESULTS

TAMILNADU DIPLOMA APRIL/MAY 2012 RESULTS INFO CLICK HERE

TAMILNADU DIPLOMA APRIL/MAY 2012 TIME TABLE ANNOUNCED CHECK SOON

TAMILNADU DIPLOMA OCTOBER 2011 REVALUATION RESULTS ANNOUNCED CHECK SOON

GATE 2012 RESULTS ANNOUNCED CHECK SOON

TANCET 2012 RESULTS ANNOUNCED CHECK SOON CLICK HERE

TANCET 2012 RANK LIST AND CUT OFF MARKS DETAILS CLICK HERE

TANCET 2012 COUNSELLING SCHEDULE DETAILS CLICK HERE

ANNA UNIVERSITY 1ST,3RD,5TH,7TH SEMESTER SYLLABUS 2008 REGULATION

EC2305 TRANSMISSION LINES and WAVE GUIDES question bank

EC1305: TRANSMISSION LINES & WAVE GUIDES SEM / YEAR: V / III

DEPARTMENT OF ELECTRONICS AND COMMUNICATION ENGINEERING
QUESTION BANK
SUBJECT CODE : EC2305 SEM / YEAR : V / III
SUBJECT NAME : TRANSMISSION LINES & WAVE GUIDES


UNIT I - TRANSMISSION LINE THEORY
PART – A
All questions – Two Marks:
1. What is group velocity?
2. What is patch loading?
3. What do you understand by loading of transmission lines?
4. Define Characteristic impedance?
5. What is frequency distortion?
6. Calculate the load reflection coefficient of open and short circuited lines?
7. Calculate the characteristic impedance for the following line parameters
R = 10.4 ohms /km L = 0.00367 H/km
C = 0.00835μf /km G = 10.8x10-6 mhos /km
8. Define phase distortion?
9. Write the equation for the input impedance of a TL?
10. Define propagation constant?
11. Define wavelength?
12. Give the input impedance of a open and short circuit line?
13. Define reflection factor?
14. Define reflection loss?
15. What is meant by reflection co – efficient?
16. State the properties of infinite line?
EC1305: TRANSMISSION LINES & WAVE GUIDES SEM / YEAR: V / III
17. Write the condition for a distortion less line?
18. When does reflection take place on a TL?
19. What is transfer impedance? State its expression?
20. What is difference between lumped and distributed parameters?
21. Draw the equivalent circuit of a TL?
22. Write the Campbell’s formula for propagation constant of a loaded line?
23. What is the need for loading?
PART – B
1. Obtain the general solution of Transmission line? (16)
2. Explain about waveform distortion and distortion less line condition? (16)
3. Explain about reflection loss? (16)
4. Discuss in details about inductance loading of telephone cables and derive the
attenuation constant (_) and phase constant (_) and velocity of signal transmission
(v) for the uniformly loaded cable? (16)
5. Derive the equation of attenuation constant and phase constant of TL in terms of R,
L, C, G? (16)
6. Explain in details about the reflection on a line not terminated in its
characteristic impedance (z0)? (16)
7. Explain in following terms (16)
(i) Reflection factor (ii) Reflection loss
(iii) Return loss
8. Explain about physical significance of TL? (16)
9. Derive the equation for transfer impedance? (16)
10. Derive the expression for input impedance of lossless line? (16)
11. Explain about telephone cable? (16)
12. Explain about different type of TL? (16)
UNIT II - THE LINE AT RADIO FREQUENCIES
PART – A
All questions – Two Marks:
1. Name few applications of half – wave line?
2. Find the VSWR and reflection co – efficient of a perfectly matched line with no
reflection from load?
3. Explain the use of quarter wave line for impedance matching?
4. What is the need for stub matching in transmission lines?
5. Why do standing waves exist on TL?
6. Define Node and antinodes?
7. What are constant S circles?
8. What are the advantages of double stub matching over single stub matching?
9. Derive the relationship between standing wave ratio and reflection co – efficient?
10. Write the expression for the characteristic impedance Ro’ of the matching quarter –
wave section of the line?
11. Give the applications of smith chart?
12. Define standing wave ratio?
13. Give the analytical expression for input impedance of dissipation less line?
14. Design a quarter wave transformers to match a load of 200 _ to a source resistance of
500 _. The operating frequency is 200 MHz?
15. Define skin effect?
16. What is zero dissipation line?
17. Mention the assumptions of radio frequency lines?
18. Distinguish between single stub matching and double stub matching?
19. Write down the expression to determine the length of the stub?
20. Write down the expression to determine the position of the stub?
PART – B
1. Explain about half wave transformer? (8)
2. Application of smith chart? (8)
3. Explain about voltage and current waveform of dissipation less line? (16)
EC1305: TRANSMISSION LINES & WAVE GUIDES SEM / YEAR: V / III
4. Derive the expression for the input impedance of the dissipation less line and the
expression for the input impedance of a quarter wave line. Also discuss the application
of quarter wave line? (16)
5. Explain single stub matching on a transmission line and derive the expression and the
length of the stub used for matching on a line? (16)
6. Design a single stub match for a load of 150+j225 ohms for a 75 ohms line at 500 MHz
using smith chart? (16)
7. A 30 m long lossless transmission line with characteristic impedance (zo) of 50 ohm is
terminated by a load impedance (ZL) = 60 + j40 ohm. The operating wavelength is 90
m. find the input impedance and SWR using smith chart? (16)
8. Explain double stub matching on a transmission line and derive the expression and the
length of the stub used for matching on a line? (16)
9. Explain about _ / 8 wave transformer? (16)
10. explain about properties of smith chart? (16)
UNIT III - GUIDED WAVES
Part-A
All questions – Two Marks:
1. Define group velocity?
2. What are the characteristics of TEM waves?
3. What is the cut off frequency of TEM wave?
4. Give the expression that relates phase velocity (Vp), Group velocity (Vg) and free
space velocity?
5. What are TE waves or H waves?
6. What are TM waves or E waves?
7. What are guided waves?
8. What is dominant mode? Give examples?
9. Write down the expression for cut off wavelength and cut off frequency?
10. Write down the expression for velocity of propagation?
11. Define attenuation factor?
12. Define wave impedance?
13. Distinguish between TE and TM waves?
14. Write down the relation between guide wavelengths and cut off wavelength?
15. Give the expression for the guide wavelength when the wave transmitted in
between two parallel plates?
16. Find the frequency of minimum attenuation foe TM waves?
17. Give relation between the attenuation factor for TE and TM waves?
18. Draw a neat sketch showing the variation in the value of attenuation with frequency
for TE, TM, and TEM mode between two parallel plates?
19. Draw a neat sketch showing the variation in the value of wave impedance with
frequency for TE, TM, and TEM mode between two parallel plates?
Part-B
1. Discuss the characteristics of TE and TM waves and also derive the cut off
frequency and phase velocity from the propagation constant? (16)
2. Derive the expression for the field strength for TE waves between parallel plates
propagating in Z direction? (16)
3. Derive the expression for attenuation of TM waves in between parallel plates?(16)
4. Derive the expression for attenuation of TE waves in between parallel
Plates? (16)
5. Derive the expression for the field strength for TM waves between
Parallel plates propagating in Z direction? (16)
6. Obtain the expression for the field components of an electromagnetic wave
propagating between a pair of perfectly conducting planes? (16)
7. Derive the expression for wave impedance of TE, TM and TEM wave between a
pair of perfectly conducting planes? (16)
8. Explain about transverse electromagnetic waves between a pair of perfectly
conducting planes? (16)
9. Prove that the velocity of propagation? (16)
UNIT IV - RECTANGULAR WAVEGUIDES
Part-A
All questions – Two Marks:
1. What are the dominant mode and degenerate modes in rectangular wave – guides?
2. A rectangular wave – guides has the following values l=2.54 cm, b= 1.27 cm
waveguide thickness = .0127. Calculate the cut off frequency?
3. Define wave impedance?
4. Why TEM mode is not possible for rectangular wave – guides?
5. Define characteristic impedance?
6. Define attenuation factor?
7. Draw a neat sketch showing the variation in the value of attenuation with frequency for
TE, TM, and TEM mode for rectangular wave guide?
8. Draw a neat sketch showing the variation in the value of wave impedance with
frequency for TE, TM, and TEM mode for rectangular wave guide?
9. Write down the expression for cut off wavelength and cut off frequency for rectangular
wave guide?
10. Write down the expression for cut off wavelength and cut off frequency for TE 10
mode?
11. Write down the expression for guide wavelength and velocity of propagation for
rectangular wave guide?
12. Write down the expression for attenuation constant for TE 10 mode?
13. Write down the expression for attenuation constant for TM 11 mode?
14. What is cut off frequency?
15. What is dominant mode? Name the dominant mode in TE and TM waves?
Part-B
1. Derive the field configuration, cut off frequency and velocity of propagation for TM
waves in rectangular wave – guides? (16)
2. Determine the solution of electric and magnetic fields of TE waves guided along
rectangular wave – guides? ` (16)
3. Explain the wave impedance of a rectangular wave – guide and derive the
expression for the wave impedance of TE,TM, and TEM mode? (16)
4. Discuss the characteristics of TE and TM waves and also derive the cut off
frequency and phase velocity from the propagation constant? (16)
5. Derive the expression for attenuation of TE10 waves in rectangular wave guide?
(16)
6. Derive the expression for attenuation of TM 11 waves in rectangular wave
guide? (16)
7. Explain about excitation modes in rectangular wave guide? (16)
8. Explain about dominant mode in rectangular wave guide? ` 16)
9. Determine the solution of electric and magnetic fields of TM waves guided along
rectangular wave – guides? (16)
10. Explain about characteristic impedance in rectangular wave guide? (16)
11. Explain about degenerate mode in rectangular wave guide? (16)
UNIT V - CIRCULAR WAVE GUIDES AND RESONATORS
Part-A
All questions – Two Marks:
1. What is cavity resonator?
2. Define the quality factor of the cavity resonator?
3. Define loaded and un loaded Q cavity resonator?
4. Give the application of circular wave guide?
5. Why rectangular or circular cavities can be used as microwave resonators?
6. Define Bessel’s function?
7. What is Eigen value?
8. What is dominant mode of TM and TE waves in circular waveguide?
9. Write expressions for the Eigen value and cut off wave number for the TE mode?
10. Write expressions for the Eigen value and cut off wave number for the TM mode?
11. Expression for the resonant frequency of the rectangular cavity resonator?
12. Expression for the resonant frequency of the circular cavity resonator?
13. Expression for the quality factor of the circular cavity resonator?
14. Expression for the quality factor of the rectangular cavity resonator?
15. Define cavity tuning?
16. Define resonant cavity?
17. Give the application of microwave resonator?
Part-B
1. Derive the Q-factor of a rectangular cavity resonator? (16)
2. Derive the TM wave components in circular wave guides using Bessel functions?
(16)
3. What is meant by cavity resonator? Derive the expression for the resonant
frequency of the rectangular cavity resonator? (16)
4. Derive the expression for cut off frequency, phase constant and phase velocity of
wave in a circular wave guide? (16)
5. Derive the expression for the resonant frequency of the circular cavity resonator?
(16)
6. Derive the expression for the resonant frequency of the semi circular cavity
resonator? (16)
7. Derive the TE wave components in circular wave guides using Bessel functions?(16)
8. Derive the expression for the wave impedance in circular wave guide? (16)
9. Derive the field strength or equation in cylindrical co – ordinates systems? 

No comments:

Post a Comment

HI FRIENDS FEEL FREE TO COMMENT IN THIS BLOG

Related Posts Plugin for WordPress, Blogger...

Subscribe via email

FREE SMS ALERTS

CLICK HERE

Custom Search